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What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement
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You need control over load balancing. But 
stop (mis)using the kernel for it!

Lightweight sidecars to manage traffic 
between services

Sidecars can do much more than just 
load balancing!

So you want to build a service 
mesh?



Weaving the mesh
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Outbound features:
❖ Service authentication
❖ Load balancing
❖ Retry and circuit breaker
❖ Fine-grained routing
❖ Telemetry
❖ Request Tracing
❖ Fault Injection

Inbound features:
❖ Service authentication
❖ Authorization
❖ Rate limits
❖ Load shedding
❖ Telemetry
❖ Request Tracing
❖ Fault Injection



Our sidecar of choice - Envoy
● A C++ based L4/L7 proxy

● Low memory footprint

● Battle-tested @ Lyft

○ 100+ services 
○ 10,000+ VMs 
○ 2M req/s

Plus an awesome team willing to work with 
the community!

Goodies:
❖ HTTP/2 & gRPC
❖ Zone-aware load balancing w/ failover
❖ Health checks, circuit breakers, timeouts, retry 

budgets
❖ No hot reloads - API driven config updates

Istio’s contributions:
❖ Transparent proxying w/ SO_ORIGINAL_DST
❖ Traffic routing and splitting
❖ Request tracing using Zipkin
❖ Fault injection



Putting it all together
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Traffic is transparently 
intercepted and proxied. App is 

unaware of Envoy’s presence



Modeling the Service Mesh
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Service discovery 
& traffic rules

1. Environment-specific topology 
extraction

2. Topology is mapped to a 
platform-agnostic model.

3. Additional rules are layered onto 
the model. E.g. retries, traffic 
splits etc.

4. Configuration is pushed to Envoy 
and applied without restarts
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Visibility
Monitoring & tracing should not be an 
afterthought in the infrastructure

Goals
● Metrics without instrumenting apps
● Consistent metrics across fleet
● Trace flow of requests across services
● Portable across metric backend providers

Istio Zipkin tracing dashboard

Istio - Grafana dashboard w/ Prometheus backend



Metrics flow
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Mixer

● Mixer collects metrics emitted by Envoys
● Adapters in the Mixer normalize and 

forward to monitoring backends
● Metrics backend can be swapped at 

runtime

Prometheus
Prometheus

InfluxDB
InfluxDB Custom 

backend



Visibility: Tracing
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Prometheus
Zipkin

InfluxDB
Stackdriver Custom 

backend

● Application do not have to deal 
with generating spans or 
correlating causality

● Envoys generate spans
○ Applications need to *forward* 

context headers on outbound 
calls

● Envoys send traces to Mixer
● Adapters at Mixer send traces to 

respective backends
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Resiliency
Istio adds fault tolerance to your application 
without any changes to code

Resilience features
❖ Timeouts
❖ Retries with timeout budget
❖ Circuit breakers
❖ Health checks
❖ AZ-aware load balancing w/ 

automatic failover
❖ Control connection pool size and 

request load
❖ Systematic fault injection

// Circuit breakers

destination: serviceB.example.cluster.local
policy:
- tags:
    version: v1
  circuitBreaker:
    simpleCb:
      maxConnections: 100
      httpMaxRequests: 1000
      httpMaxRequestsPerConnection: 10
      httpConsecutiveErrors: 7
      sleepWindow: 15m
      httpDetectionInterval: 5m



Resiliency Testing

Systematic fault injection to identify weaknesses in failure recovery policies
○ HTTP/gRPC error codes 
○ Delay injection
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Timeout: 100ms
Retries: 3
300ms

Timeout: 200ms
Retries: 2
400ms



Efficiency
● L7 load balancing

○ Passive/Active health checks, circuit breaks
○ Backend subsets
○ Affinity

● Inter-service communication happens over HTTP/2
○ HTTP/1.1 connections are transparently upgraded
○ QUIC on the roadmap

● TLS offload
○ No more JSSE or stale SSL versions.

● HTTP/2 and gRPC proxying
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Traffic Splitting
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Pod Labels: 
version: v1.5
env: us-prod

svcB

Envoy

Pod Labels:
version: v2.0-alpha, 
env:us-staging

serviceB.example.cluster.local

Traffic routing 
rules

99%

1%

Rules API

Pilot

Traffic control is decoupled from infrastructure scaling

// A simple traffic splitting rule

destination: serviceB.example.cluster.local
match:
  source: serviceA.example.cluster.local
route:
- tags:
    version: v1.5
    env: us-prod
  weight: 99

- tags:
    version: v2.0-alpha
    env: us-staging
  weight: 1
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Content-based traffic steering

svcA

Service A

svcB

Service B

version: v1

Pod 3
Pod 2

Pod 1

User-agent: *Android*

svcB’

version: canary

Pod 4

User-agent: *iPhone*

Traffic Steering
// Content-based traffic steering rule

destination: serviceB.example.cluster.local

match:

  httpHeaders:

    user-agent:

      regex: ^(.*?;)?(iPhone)(;.*)?$

precedence: 2

route:

- tags:

    version: canary
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Securing Microservices

● Verifiable identity

● Secure naming / addressing

● Traffic encryption

● Revocation



Problem: Strong Service Security at Scale

Concerns
● Concerned about insider access risks
● Adopting a (micro-)services architecture
● Audit & Compliance

Issues
● Modern architectures are based on dynamically placed workloads and remotely 

accessed shared (micro-)services. 
● Existing network based security paradigms either enable broad access within a 

network or are brittle / hard to manage. 
● Customers want a way to limit sensitive data access to only limited services (or 

identities) and enforce strong authentication at scale.



Istio - Security at Scale

spiffe.io

http://spiffe.io/
http://spiffe.io/
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Putting it all together
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What’s Mixer For?
● Nexus for policy evaluation and telemetry reporting

○ Precondition checking

○ Quotas & Rate Limiting

● Primary point of extensibility

● Enabler for platform mobility

● Operator-focused configuration model



Plugin Model for Extensibility
● Mixer uses pluggable adapters to extend its 

functionality
○ Adapters are modules that interface to infrastructure backends
○ They expose specialized interfaces (logging, metrics, quotas, etc)
○ Multi-interface adapters are possible (e.g., a Stackdriver adapter 

exposing logging & monitoring)

● Adapters run within the Mixer process Mixer

GCP

AWS

Prometheus

Heapster

New Relic

Bluemix



Attributes - The behavioral vocabulary

target.service = “playlist.svc.cluster.local”
request.size   = 345
request.time   = 2017-04-12T12:34:56Z
source.ip      = 192.168.10.1
source.name    = “music-fe.serving.cluster.local”
source.user    = “admin@musicstore.cluster.local”
api.operation  = “GetPlaylist”



Attributes
● Typed name-value tuples that describe behaviors within the mesh

○ Base vocabulary
○ Extensible

● Envoy and Services produce attributes, Mixer consumes them
● Attributes are fundamental to how operators experience Istio



Roadmap

● More networking features - UDP, Payload transforms, Websocket, Global LB
● VMs and other environments
● Hybrid cloud & federation
● Value-add integrations - ACLs, Telemetry, Audit, Policy, ....
● Security - vTPM/HSM & Cert stores, Federation, Cloud Platforms, ...
● Stability



Community Partners
● RedHat
● Pivotal
● WeaveWorks
● Tigera
● Datawire
● Scytale (SPIFFE)

… and you!



Thanks! Phew


