
Istio
A modern service mesh

Louis Ryan
Google
@louiscryan

Shriram Rajagopalan
IBM
@rshriram

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement

Why do you need this?

● Microservices

Why do you want this?

● Microservices

● Infrastructure Bloat X Polyglot

Why do you want this?

● Microservices

● Infrastructure Bloat X Polyglot

● Operational Velocity

Why do you want this?

● Microservices

● Infrastructure Bloat X Polyglot

● Operational Velocity

● Control

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement

You need control over load balancing. But
stop (mis)using the kernel for it!

Lightweight sidecars to manage traffic
between services

Sidecars can do much more than just
load balancing!

So you want to build a service
mesh?

Weaving the mesh

svcA

sidecarsidecar

Service A

svcB

sidecar

Service B

External
Services

HTTP/1.1, HTTP/2, gRPC,
TCP with or without TLS

HTTP/1.1, HTTP/2, gRPC,
TCP with or without TLS

Internet

Outbound features:
❖ Service authentication
❖ Load balancing
❖ Retry and circuit breaker
❖ Fine-grained routing
❖ Telemetry
❖ Request Tracing
❖ Fault Injection

Inbound features:
❖ Service authentication
❖ Authorization
❖ Rate limits
❖ Load shedding
❖ Telemetry
❖ Request Tracing
❖ Fault Injection

Our sidecar of choice - Envoy
● A C++ based L4/L7 proxy

● Low memory footprint

● Battle-tested @ Lyft

○ 100+ services
○ 10,000+ VMs
○ 2M req/s

Plus an awesome team willing to work with
the community!

Goodies:
❖ HTTP/2 & gRPC
❖ Zone-aware load balancing w/ failover
❖ Health checks, circuit breakers, timeouts, retry

budgets
❖ No hot reloads - API driven config updates

Istio’s contributions:
❖ Transparent proxying w/ SO_ORIGINAL_DST
❖ Traffic routing and splitting
❖ Request tracing using Zipkin
❖ Fault injection

Putting it all together

svcA

Envoy

Pod

Service A

svcB

Envoy

Service B

Pilot

Control Plane API

Mixer

Discovery & Config
data to Envoys

Policy checks,
telemetry

Control flow during
request processing Istio-Auth

TLS certs
to Envoy

Traffic is transparently
intercepted and proxied. App is

unaware of Envoy’s presence

Modeling the Service Mesh

et
cd

Ku
be

rn
et

es

Co
ns

ul

Envoy

Abstract Model

Cu
st

om

di
sc

ov
er

y

Platform Adapter

Envoy APIRu
le

s
AP

I

Pilot

Envoy EnvoyEnvoy

Service discovery
& traffic rules

1. Environment-specific topology
extraction

2. Topology is mapped to a
platform-agnostic model.

3. Additional rules are layered onto
the model. E.g. retries, traffic
splits etc.

4. Configuration is pushed to Envoy
and applied without restarts

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement

Visibility
Monitoring & tracing should not be an
afterthought in the infrastructure

Goals
● Metrics without instrumenting apps
● Consistent metrics across fleet
● Trace flow of requests across services
● Portable across metric backend providers

Istio Zipkin tracing dashboard

Istio - Grafana dashboard w/ Prometheus backend

Metrics flow

svcA

Envoy

Pod

Service A

svcB

Envoy

Service B

API: /svcB
Latency: 10ms
Status Code: 503
Src: 10.0.0.1
Dst: 10.0.0.2
…...

Prometheus InfluxDB

Pr
om

et
he

us

Ad
ap

te
r

In
flu

xD
B

Ad
ap

te
r

 C
us

to
m

Ad

ap
te

r

Mixer

● Mixer collects metrics emitted by Envoys
● Adapters in the Mixer normalize and

forward to monitoring backends
● Metrics backend can be swapped at

runtime

Prometheus
Prometheus

InfluxDB
InfluxDB Custom

backend

Visibility: Tracing

svcA

Envoy

Pod

Service A

svcB

Envoy

Service B

Trace Headers
X-B3-TraceId
X-B3-SpanId

X-B3-ParentSpanId
X-B3-Sampled
X-B3-Flags svcC

Envoy

Service C

SpansSpans

Prometheus InfluxDB

Zi
pk

in

Ad
ap

te
r

St
ac

kd
riv

er

Ad
ap

te
r

 C
us

to
m

Ad

ap
te

r

Mixer

Prometheus
Zipkin

InfluxDB
Stackdriver Custom

backend

● Application do not have to deal
with generating spans or
correlating causality

● Envoys generate spans
○ Applications need to *forward*

context headers on outbound
calls

● Envoys send traces to Mixer
● Adapters at Mixer send traces to

respective backends

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Control

Resiliency
Istio adds fault tolerance to your application
without any changes to code

Resilience features
❖ Timeouts
❖ Retries with timeout budget
❖ Circuit breakers
❖ Health checks
❖ AZ-aware load balancing w/

automatic failover
❖ Control connection pool size and

request load
❖ Systematic fault injection

// Circuit breakers

destination: serviceB.example.cluster.local
policy:
- tags:
 version: v1
 circuitBreaker:
 simpleCb:
 maxConnections: 100
 httpMaxRequests: 1000
 httpMaxRequestsPerConnection: 10
 httpConsecutiveErrors: 7
 sleepWindow: 15m
 httpDetectionInterval: 5m

Resiliency Testing

Systematic fault injection to identify weaknesses in failure recovery policies
○ HTTP/gRPC error codes
○ Delay injection

svcA

Envoy

Service A

svcB

Envoy

Service B

svcC

Envoy

Service C

Timeout: 100ms
Retries: 3
300ms

Timeout: 200ms
Retries: 2
400ms

Efficiency
● L7 load balancing

○ Passive/Active health checks, circuit breaks
○ Backend subsets
○ Affinity

● Inter-service communication happens over HTTP/2
○ HTTP/1.1 connections are transparently upgraded
○ QUIC on the roadmap

● TLS offload
○ No more JSSE or stale SSL versions.

● HTTP/2 and gRPC proxying

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement

Traffic Splitting

svcA

Envoy

Pod

Service A

svcB

Envoy

Se
rv

ic
e

B

http://serviceB.example

Pod Labels:
version: v1.5
env: us-prod

svcB

Envoy

Pod Labels:
version: v2.0-alpha,
env:us-staging

serviceB.example.cluster.local

Traffic routing
rules

99%

1%

Rules API

Pilot

Traffic control is decoupled from infrastructure scaling

// A simple traffic splitting rule

destination: serviceB.example.cluster.local
match:
 source: serviceA.example.cluster.local
route:
- tags:
 version: v1.5
 env: us-prod
 weight: 99

- tags:
 version: v2.0-alpha
 env: us-staging
 weight: 1

svcA

Service A
svcB

Service B
version: v1

Pod 3
Pod 2

Pod 1

Content-based traffic steering

svcA

Service A

svcB

Service B

version: v1

Pod 3
Pod 2

Pod 1

User-agent: *Android*

svcB’

version: canary

Pod 4

User-agent: *iPhone*

Traffic Steering
// Content-based traffic steering rule

destination: serviceB.example.cluster.local

match:

 httpHeaders:

 user-agent:

 regex: ^(.*?;)?(iPhone)(;.*)?$

precedence: 2

route:

- tags:

 version: canary

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement

Securing Microservices

● Verifiable identity

● Secure naming / addressing

● Traffic encryption

● Revocation

Problem: Strong Service Security at Scale

Concerns
● Concerned about insider access risks
● Adopting a (micro-)services architecture
● Audit & Compliance

Issues
● Modern architectures are based on dynamically placed workloads and remotely

accessed shared (micro-)services.
● Existing network based security paradigms either enable broad access within a

network or are brittle / hard to manage.
● Customers want a way to limit sensitive data access to only limited services (or

identities) and enforce strong authentication at scale.

Istio - Security at Scale

spiffe.io

http://spiffe.io/
http://spiffe.io/

What is a ‘Service Mesh’ ?

A network for services, not bytes

● Visibility

● Resiliency & Efficiency

● Traffic Control

● Security

● Policy Enforcement

Putting it all together

svcA

Envoy

Pod

Service A

svcB

Envoy

Service B

Pilot

Control Plane API

Mixer

Discovery & Config
data to Envoys

Policy checks,
telemetry

Control flow during
request processing Istio-Auth

TLS certs
to Envoy

What’s Mixer For?
● Nexus for policy evaluation and telemetry reporting

○ Precondition checking

○ Quotas & Rate Limiting

● Primary point of extensibility

● Enabler for platform mobility

● Operator-focused configuration model

Plugin Model for Extensibility
● Mixer uses pluggable adapters to extend its

functionality
○ Adapters are modules that interface to infrastructure backends
○ They expose specialized interfaces (logging, metrics, quotas, etc)
○ Multi-interface adapters are possible (e.g., a Stackdriver adapter

exposing logging & monitoring)

● Adapters run within the Mixer process Mixer

GCP

AWS

Prometheus

Heapster

New Relic

Bluemix

Attributes - The behavioral vocabulary

target.service = “playlist.svc.cluster.local”
request.size = 345
request.time = 2017-04-12T12:34:56Z
source.ip = 192.168.10.1
source.name = “music-fe.serving.cluster.local”
source.user = “admin@musicstore.cluster.local”
api.operation = “GetPlaylist”

Attributes
● Typed name-value tuples that describe behaviors within the mesh

○ Base vocabulary
○ Extensible

● Envoy and Services produce attributes, Mixer consumes them
● Attributes are fundamental to how operators experience Istio

Roadmap

● More networking features - UDP, Payload transforms, Websocket, Global LB
● VMs and other environments
● Hybrid cloud & federation
● Value-add integrations - ACLs, Telemetry, Audit, Policy,
● Security - vTPM/HSM & Cert stores, Federation, Cloud Platforms, ...
● Stability

Community Partners
● RedHat
● Pivotal
● WeaveWorks
● Tigera
● Datawire
● Scytale (SPIFFE)

… and you!

Thanks! Phew

